The Reduction of Resolution of Weyl module from Characteristic-free to Lascoux Resolution in case $(6,5,3)$

Haytham Razooki Hassan, Nora Taha Abd

Abstract

In this paper we study the relation between the resolution of weyl module $K_{(6,5,3)} F$ in characteristic-free mode and in the Lascoux mode (characteristic zero),more precisely we obtain the Lascoux resolution of $K_{(6,5,5)} F$ in characteristic zero as an application of the resolution of $K_{(6,5,5)} F$ in characteristic-free.

Index Terms- Resolution ,Weyl module Lascoux module ,divided power ,characteristic-free.

I. Introduction

Let R be commutative ring with 1 and F be free R -module by $D_{n} F$ we mean the divided power of degree n . The resolution Res [p ,q , , , t_{1}, t_{2}] of weyl module $K_{\lambda / \mu} F$ associated to the three-rowed skew-shape $\left(p+t_{1}+t_{2}, q+t_{2}, r\right) /\left(t_{1}+t_{2}, t_{2}, 0\right)$ call the shape represented by the diagram

In general ,the weyl module $K_{\lambda / \mu} F$ is presented by the box map $\Sigma_{k>0} D_{p+t_{1}+k} F \otimes D_{q-t_{1}-k} F \otimes D_{r} F$
\oplus
$\xrightarrow{\Pi} D_{p} F \otimes D_{q} F \otimes D_{r} F \xrightarrow{d_{\lambda / \mu}^{f}} K_{\lambda / \mu}$
$\sum_{1>0} D_{p} F \otimes D_{q+t_{2}+1} F \otimes D_{r-t_{2}-1} F$
Where the maps
$\sum_{k>0} D_{p+t_{1}+k} F \otimes D_{q-t_{1}-k} F \otimes D_{r} F \rightarrow D_{p} F \otimes D_{q} F \otimes D_{r} F$ may be interpreted as $K^{\text {th }}$ divided power of the place polarization from place 1 to place 2 (i.e. $\partial_{a 2}^{(k)}$), the maps
$\Sigma_{1>0} D_{p} F \otimes D_{q+t_{2}+1} F \otimes D_{r-t_{2}-1} F \rightarrow D_{p} F \otimes D_{q} F \otimes D_{r} F$ may be place 2 interpreted as $I^{\text {th }}$ divided power of the place polarization from place 2 to 3 (i.e. $\partial_{a 2}^{(\downarrow)}$)[1]. we have to mention that we shall use D_{n} instead of $D_{n} F$ to refer to divided power algebra of degree n.

[^0]
II. Characteristic-Free Resolution of the partition $(6,5,3)$

We find the terms of the resolution of weyl module in the case of the partition $(6,5,3)$. In general a terms of the resolution of weyl module in the case of a three-rowed partition (p, q, r) which appeared in [2] are
Res $\quad([p, q ; 0]) \quad \otimes D_{r} \oplus \Sigma_{l \geq 0} Z_{a 2}^{(l+1)} y \quad$ Res $([p, q+l+1 ; l+1]) \quad \otimes D_{r-l-1} \oplus \sum_{l_{1} \geq 0, l_{2} z l_{1} Z_{12}^{\left(l_{2}+1\right)} y \underline{Z}_{a 1}^{\left(l_{1}+1\right)} z}^{z}$ $\operatorname{Res}\left(\left[p+l_{1}+1, q+l_{2}+1, l_{2}-l_{1}\right]\right) \otimes D_{\gamma-\left(l_{1}+l_{2}+2\right)}$
Where x, y and z stand for the separator variables, and the boundary map is $\partial_{x}+\partial_{y}+\partial_{z}$. Let again $\operatorname{Bar}(M, A ; S)$ be the free bar module on the set $S=\{x, y, z\}$ consisting of three separators x, y and z, where A is the free associative (non-commutative) algebra generated by $Z_{21}, Z_{a 2}$ and Z_{31} and their divided powers with the following relations:
$Z_{a 2}^{(a)} Z_{a 1}^{(b)}=Z_{a 1}^{(b)} Z_{a 2}^{(a)} \quad$ and $\quad Z_{21}^{(a)} Z_{a 1}^{(b)}=Z_{a 1}^{(b)} Z_{21}^{(a)}$
and the module M is the direct sum of tensor products of divided power module $D_{p} \otimes D_{q} \otimes D_{r}$ for suitable p, q and r with the action of Z_{21}, Z_{32} and Z_{21} and their divided powers . we will consider the case when $p=6, q=5$, and $r=3$. we have

$$
\begin{aligned}
& \operatorname{Res}([6,5,0]) \\
& \otimes D_{a} \oplus \Sigma_{l \geq 0} \underline{Z}_{a 2}^{(l+1)} y \\
& \operatorname{Res}([6,5+l+1 ; l+1]) \otimes D_{a-l-1} \oplus \sum_{l_{1} \geq 0, l_{2} \geq l_{1}} \underline{Z}_{a 2}^{\left(l_{2}+1\right)} y Z_{a 1}^{\left(l_{1}+1\right)} 2 \\
& \operatorname{Res}\left(\left[6+l_{1}+1,5+l_{2}+1, l_{2}-l_{1}\right]\right) \otimes D_{1-\left(l_{1}+l_{2}+2\right)} \text {, So } \\
& \sum_{l \geq 0} \underline{Z}_{32}^{(l+1)} y \quad \operatorname{Res}([6,5+l+1 ; l+1]) \quad \otimes D_{a-l-1} \\
& =\underline{Z}_{32} y \quad \operatorname{Res}([6,6 ; 1]) \quad \otimes D_{2} \oplus \underline{Z}_{a 2}^{(2)} y \quad \operatorname{Res}([6,7 ; 2]) \\
& \otimes D_{1} \oplus \underline{Z}_{12}^{(a)} y \operatorname{Res}([6,8 ; 3]) \otimes D_{0} \text { and } \\
& \sum_{l_{1} \geq 0 l_{2} \geq l_{1}} \underline{Z}_{12}^{\left(l_{2}+1\right)} y \underline{Z}_{11}^{\left(l_{1}+1\right)} z \operatorname{Res}\left(\left[6+l_{1}+1,5+l_{2}+1 ; l_{2}-l_{1}\right]\right) \\
& \text { Q } D_{a-\left(l_{1}+l_{2}+2\right)} \\
& =\underline{Z}_{32} y \underline{Z}_{31} z \operatorname{Res}([7,6 ; 0]) \otimes D_{1} \oplus \underline{Z}_{32}^{[2]} y \underline{Z}_{31} z \operatorname{Res}([7,7 ; 1]) D_{0} \\
& \text { Where } \underline{Z}_{a 2} y \text { is the bar complex: } 0 \rightarrow Z_{a 2} y \xrightarrow{\partial_{y}} Z_{a 2} \rightarrow 0 \\
& Z_{a 2}^{(2)} y \text { is the bar complex: } \\
& 0 \rightarrow Z_{a 2} y Z_{a 2} y \xrightarrow{\partial_{y}} Z_{a 2}^{(2)} y \xrightarrow{\partial_{y}} Z_{a 2}^{(2)} \rightarrow 0 \\
& Z_{\text {a2 }}^{(a)} y \text { is the bar complex: } \\
& 0 \rightarrow Z_{a 2} y Z_{a 2} y Z_{a 2} y \xrightarrow{\partial_{y}} Z_{a 2}^{(2)} y Z_{a 2} y \oplus Z_{a 2} y Z_{a 2}^{(2)} y
\end{aligned}
$$

$\xrightarrow{\partial_{y}} Z_{a 2}^{(\mathrm{a})} y \xrightarrow{\partial_{y}} Z_{a 2}^{(\mathrm{a})} \rightarrow 0$ and $\underline{Z}_{a 1} z$ is the bar complex: $0 \rightarrow Z_{a 1} z \xrightarrow{\partial_{z}} Z_{a 1} \rightarrow 0$
Then in this case we have the following terms :

- In dimension zero $\left(M_{0}\right)$ we have $D_{6} \otimes D_{5} \otimes D_{a}$
- In dimension one (M_{1}) we have
- $Z_{21}^{(b)} x D_{6+b} \otimes D_{5-b} \otimes D_{a}$; with $b=1,2,3,4,5$
- $Z_{\mathrm{a2}}^{(b)} y D_{6} \otimes D_{5+b} \otimes D_{a-b}$; with $b=1,2,3$
- In dimension two $\left(M_{2}\right)$ we have the sum of the following terms:
- $Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x D_{6+|b|} \otimes D_{5-\mid b]} \otimes D_{a}$; with $|b|=b_{1}+b_{2}=$
$2,3,4,5$
- $Z_{a 2} y Z_{21}^{(b)} x D_{6+b} \otimes D_{6-b} \otimes D_{2}$; with $b=2,3,4,5,6$
- $Z_{a 2}^{(2)} y Z_{21}^{(b)} x D_{6+b} \otimes D_{7-b} \otimes D_{1}$; with $b=3,4,5,6,7$
- $Z_{a 2}^{(a)} y Z_{21}^{(b)} x D_{6+b} \otimes D_{8-b} \otimes D_{0}$; with $b=4,5,6,7,8$
- $Z_{a 2}^{\left[b_{1}\right]} y Z_{a 2}^{\left(b_{2}\right)} y D_{6} \otimes D_{5+\mid b]} \otimes D_{a-\mid b]}$; with $|b|=b_{1}+b_{2}=$ 2,3
- $Z_{a 2}^{(b)} y Z_{a 1} z D_{7} \otimes D_{5+b} \otimes D_{2-b}$; with $b=1,2$
- In dimension three $\left(M_{a}\right)$ we have the sum of the following terms:
- $Z_{21}^{\left(b_{11}\right)} x Z_{21}^{\left(b_{21}\right)} x Z_{21}^{\left(b_{3}\right)} x D_{6+|b|} \otimes D_{5-|b|} \otimes D_{2}$; with $|b|=b_{1}+$ $b_{2}+b_{a}=3,4,5$ and $b_{1} \geq 1$
- $Z_{\text {a2 }} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x D_{6+|b|} \otimes D_{6-|b|} \otimes D_{2}$; with $|b|=b_{1}+$ $b_{2}=3,4,5,6$
and $b_{1} \geq 2$
- $Z_{a 2}^{(2)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x D_{6+|b|} \otimes D_{7-|b|} \otimes D_{1}$; with $|b|=b_{1}+$ $b_{2}=4,5,6,7$
and $b_{1} \geq 3$
- $Z_{a 2} y Z_{a 2} y Z_{21}^{(b)} x D_{6+b} \otimes D_{7-b} \otimes D_{1}$; with $b=3,4,5,6,7$
- $Z_{22}^{(a)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x D_{6+\mid b]} \otimes D_{7-\mid b]} \otimes D_{1}$; with $\| b \mid=b_{1}+$ $b_{2}=5,6,7,8$
and $b_{1} \geq 4$
- $Z_{22}^{\left(c_{1}\right)} y Z_{22}^{\left(c_{2}\right)} y Z_{21}^{(b)} x D_{6+b} \otimes D_{8-b} \otimes D_{0}$; with $c_{1}+c_{2}=$

3 and $b=4,5,6,7,8$

- $Z_{a 2} y Z_{a 2} y Z_{a 2} y D_{6} \otimes D_{8} \otimes D_{0}$
$\cdot Z_{a 2} y Z_{a 1} z Z_{21}^{(b)} x D_{7-b} \otimes D_{6-b} \otimes D_{1}$; with $b=1,2,3,4,5,6 \quad \bullet Z_{22}^{(2)} y Z_{31} z Z_{21}^{(b)} x D_{7+b} \otimes D_{7-b} \otimes D_{0}$; with $b=2,3,4,5,6,7$
- $Z_{a 2} y Z_{a 2} y Z_{a 1} z D_{7} \otimes D_{7} \otimes D_{0}$
- In dimension four $\left(M_{4}\right)$ we have the sum of the following terms:
- $Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x D_{6+\mid b]} \otimes D_{5-\mid b]} \otimes D_{3}$; with $|b|=$
$\sum_{i=1}^{4} b_{i}=4,5$ and $b_{1} \geq 1$
- $Z_{a 2} y Z_{21}^{\left(b_{11}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x D_{6+|b|} \otimes D_{6-|b|} \otimes D_{2}$; with $\| b \mid=$
$b_{1}+b_{2}+b_{2}=4,5,6$
and $b_{1} \geq 2$
- $Z_{a 2}^{(2)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{21}\right)} x Z_{21}^{\left(b_{3}\right)} x D_{6+|b|} \otimes D_{7-|b|} \otimes D_{1}$; with $|b|=$ $b_{1}+b_{2}+b_{2}=5,6,7$
and $b_{1} \geq 3$
- $Z_{32} y Z_{32} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{21}\right)} x D_{6+|b|} \otimes D_{7-|b|} \otimes D_{1}$; with $|b|=$
$b_{1}+b_{2}=4,5,6,7$ and $b_{1} \geq 3$
- $Z_{a 2}^{(\mathrm{a})} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left[b_{3}\right]} x D_{6+\mid b]} \otimes D_{8-\mid b]} \otimes D_{0}$; with $|b|=$
$b_{1}+b_{2}+b_{2}=6,7,8$
and $b_{1} \geq 4$
$\cdot Z_{a 2}^{\left[c_{1}\right]} y Z_{a 2}^{\left[c_{2}\right]} y Z_{21}^{\left[c_{1}\right]} x Z_{21}^{\left[b_{2}\right]} x D_{6+\mid b]} \otimes D_{8-|b|} \otimes D_{0}$; with $c_{1}+$ $c_{2}=3$ and $|b|=b_{1}+b_{2}=5,6,7,8$
and $b_{1} \geq 4$
- $Z_{a 2} y Z_{a 2} y Z_{a 2} y Z_{21}^{(b)} x D_{6+b} \otimes D_{8-b} \otimes D_{0}$; with $b=4,5,6,7,8$
- $Z_{a 2} y Z_{a 1} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{21}\right)} x D_{7+|b|} \otimes D_{6-|b|} \otimes D_{1}$; with $|b|=$ $b_{1}+b_{2}=2,3,4,5,6$ and $b_{1} \geq 1$
- $Z_{22}^{[2]} y Z_{31} z Z_{21}^{\left(b_{11}\right)} x Z_{21}^{\left(b_{21}\right)} x D_{7+|b|} \otimes D_{7-|b|} \otimes D_{0}$; with $\| b \mid=$ $b_{1}+b_{2}=3,4,5,6,7$ and $b_{1} \geq 2$
- $Z_{a 2} y Z_{\text {a2 }} y Z_{a 1} z Z_{21}^{(b)} x D_{7+b} \otimes D_{7-b} \otimes D_{0}$; with $b=$

2,3,4,5,6,7

- In dimension five $\left(M_{5}\right)$ we have the sum of the following terms:
- $Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{11} \otimes D_{0} \otimes D_{3}$
- $Z_{a 2} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x D_{6+|b|} \otimes D_{6-\mid b]} \otimes D_{2}$; with $|b|=$
$\sum_{i=1}^{4} b_{i}=5,6$ and
$b_{1} \geq 2$
- $Z_{22}^{(2)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x D_{6+|b|} \otimes D_{7-|b|} \otimes D_{1}$; with $|b|=$
$\sum_{i=1}^{4} b_{i}=6,7$ and
$b_{1} \geq 3$
- $Z_{a 2} y Z_{a 2} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x D_{6+|b|} \otimes D_{7-|b|} \otimes D_{1}$; with $|b|=$ $b_{1}+b_{2}+b_{2}=5,6,7$ and $b_{1} \geq 3$
- $Z_{22}^{(a)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x D_{6+\mid b]} \otimes D_{9-\mid b]} \otimes D_{0}$; with $|b|=$ $\sum_{i=1}^{4} b_{i}=7,8$
and $b_{1} \geq 4$
- $Z_{12}^{\left[c_{1}\right]} y Z_{a 2}^{\left[c_{2}\right]} y Z_{21}^{\left[b_{1}\right]} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left[b_{3}\right]} x D_{6+| | b]} \otimes D_{8-\mid \overrightarrow{|c|}} \otimes D_{0}$; with $c_{1}+$
$c_{2}=3$
and $|b|=b_{1}+b_{2}+b_{a}=6,7,8$ and $b_{1} \geq 4$
- $Z_{\text {a2 }} y Z_{\text {a2 }} y Z_{a 2} y Z_{21}^{\left(b_{11}\right)} x Z_{21}^{\left(b_{21}\right)} x D_{6+|b|} \otimes D_{9-|b|} \otimes D_{0}$; with $|b|=$
$b_{1}+b_{2}=5,6,7,8$ and $b_{1} \geq 4$
- $Z_{a 2} y Z_{a 1} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x D_{7+|b|} \otimes D_{6-\mid b]} \otimes D_{1}$; with $|b|=$ $b_{1}+b_{2}+b_{a}=3,4,5,6$ and $b_{1} \geq 1$
- $Z_{a 2}^{(2)} y Z_{a 1} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x D_{7+\mid b]} \otimes D_{7-|b|} \otimes D_{0}$; with $|b|=$
$b_{1}+b_{2}+b_{a}=4,5,6,7$ and $b_{1} \geq 2$
- $Z_{\text {a2 }} y Z_{\text {a2 }} y Z_{\text {a1 }} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x D_{7+|\vec{b}|} \otimes D_{7-|b|} \otimes D_{0}$; with $|b|=$ $b_{1}+b_{2}=3,4,5,6,7$ and $b_{1} \geq 2$
- In dimension six $\left(M_{6}\right)$ we have the sum of the following terms:
$\cdot Z_{32} y Z_{21}^{(2)} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{12} \otimes D_{0} \otimes D_{2}$

The Reduction of Resolution of Weyl module from Characteristic-free to Lascoux Resolution in case $(\mathbf{6}, 5,3)$

- $Z_{22}^{(2)} y Z_{21}^{(a)} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{13} \otimes D_{0} \otimes D_{1} \cdot Z_{a 2} y Z_{a 2} y Z_{21}^{\left[b_{1}\right]} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left[b_{4}\right]} x D_{6+|b|} \otimes D_{7-|b|} \otimes D_{1}$:
with $|b|=\sum_{i=1}^{4} b_{i}=6,7$ and $b_{1} \geq 3$
- $Z_{32}^{(a)} y Z_{21}^{[4]} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{14} \otimes D_{0} \otimes D_{0} \cdot Z_{32}^{\left[c_{1}\right]} y Z_{a 2}^{\left[c_{2}\right]} y Z_{21}^{\left[b_{1}\right]} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left(b_{0}\right)} x D_{6+\mid b]} \otimes D_{8-\mid b]} \otimes D_{0} ;$
with $c_{1}+c_{2}=3$ and $|b|=\sum_{i=1}^{4} b_{i}=7,8$ and $b_{1} \geq 4 \cdot Z_{a 2} y Z_{a 2} y Z_{a 2} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left[b_{3}\right]} x D_{6+\mid b]} \otimes D_{8-\mid b]} \otimes D_{0}$;
with $|b|=b_{1}+b_{2}+b_{a}=6,7,8$ and $b_{1} \geq 4 \cdot Z_{a 2} y Z_{31} z Z_{21}^{\left[b_{1}\right]} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left[b_{4}\right]} x D_{7+|b|} \otimes D_{6-\mid b]} \otimes D_{1}$;
with $\|b\|=\sum_{i=1}^{4} b_{i}=4,5,6$ and $b_{1} \geq 1$
$\cdot Z_{a 2}^{[2]} y Z_{a 1} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left[b_{4}\right)} x D_{7+|b|} \otimes D_{7-\mid b]} \otimes D_{0}$;
with $\| b \mid=\sum_{i=1}^{4} b_{i}=5,6,7$ and $b_{1} \geq 2$
- $Z_{\text {a2 }} y Z_{\text {a2 }} y Z_{a 1} z Z_{21}^{\left[b_{1}\right]} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left[b_{3}\right]} x D_{7+\mid b]} \otimes D_{7-|b|} \otimes D_{0}$;
with $|b|=b_{1}+b_{2}+b_{a}=4,5,6,7$ and $b_{1} \geq 2$
- In dimension seven $\left(M_{7}\right)$ we have the sum of the following terms: $\bullet Z_{32} y Z_{a 2} y Z_{21}^{(a)} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{13} \otimes D_{0} \otimes D_{1}$
- $Z_{a 2}^{\left(c_{1}\right)} y Z_{22}^{\left(c_{2}\right)} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x D_{6+\mid b]} \otimes D_{8-\mid b]} \otimes D_{0}$;
with $c_{1}+c_{2}=3$ and $|b|=\sum_{i=1}^{5} b_{i}=8$ and $b_{1} \geq 4$
- $Z_{a 2} y Z_{a 2} y Z_{a 2} y Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left[b_{3}\right]} x Z_{21}^{\left(b_{4}\right)} x D_{6+\mid b]} \otimes D_{8-\mid b]} \otimes D_{0}$:
with $|b|=b_{1}+b_{2}+b_{a}=7,8$ and $b_{1} \geq 4$
- $Z_{a 2} y Z_{21} z Z_{21}^{\left[b_{1}\right]} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x D_{7+\mid b]} \otimes D_{6-\mid b]} \otimes D_{1}$;
with $\| b \mid=\sum_{i=1}^{5} b_{i}=5,6$ and $b_{1} \geq 1$
- $Z_{22}^{(2)} y Z_{11} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left[b_{5}\right)} x D_{7+|b|} \otimes D_{7-\mid b]} \otimes D_{0}$;
with $|b|=\sum_{i=1}^{5} b_{i}=6,7$ and $b_{1} \geq 2$
- $Z_{a 2} y Z_{a 2} y Z_{31} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left[b_{2}\right]} x Z_{21}^{\left[b_{3}\right]} x Z_{21}^{\left[b_{4}\right]} x D_{7+\mid b]} \otimes D_{7-\mid b]} \otimes D_{0}$ x
with $\|b\|=\sum_{i=1}^{4} b_{i}=5,6,7$ and $b_{1} \geq 2$
- In dimension eight $\left(M_{g}\right)$ we have the sum of the following terms:
$\cdot Z_{\text {a2 }} y Z_{a 2} y Z_{a 2} y Z_{21}^{(4)} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{14} \otimes D_{0} \otimes D_{0}$
- $Z_{22} y Z_{31} z Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{12} \otimes D_{0} \otimes D_{1}$
$\cdot Z_{12}^{(2)} y Z_{11} z Z_{21}^{(2)} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{14} \otimes D_{0} \otimes D_{0}$
- $Z_{a 2} y Z_{a 2} y Z_{a 1} z Z_{21}^{\left(b_{1}\right)} x Z_{21}^{\left(b_{2}\right)} x Z_{21}^{\left(b_{3}\right)} x Z_{21}^{\left(b_{4}\right)} x Z_{21}^{\left(b_{5}\right)} x D_{7+|b|} \otimes D_{7-|b|} \otimes D_{0}$:
with $|b|=\sum_{i=1}^{5} b_{i}=6,7$ and $b_{1} \geq 2$
Finally In dimension nine $\left(M_{9}\right)$ we have
$\cdot Z_{\text {a2 }} y Z_{32} y Z_{\text {a1 }} z Z_{21}^{(2)} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x Z_{21} x D_{14} \otimes D_{0} \otimes D_{0}$
In [2] , it is necessary to introduce a quotient of bar complex modulo the Capelli identities relations ; the proof these relation are compatible with the boundary map $\partial_{x}+\partial_{y}+\partial_{z}$ is complicated [2] .

$$
\text { III. LASCOUX RESOLUTION OF THE PARTITION }(6,5,3)
$$

The Lascoux resolution of the weyl module associated to the partition $(6,5,3)$ looks like this

$$
\begin{array}{cccc}
D_{8} F \otimes D_{4} F \otimes D_{2} F & D_{7} F \otimes D_{4} F \otimes D_{3} F \\
0 \rightarrow D_{8} F \otimes D_{5} F \otimes D_{1} F \rightarrow & \oplus & \rightarrow & \oplus
\end{array}
$$

Where the position of the terms of the complex determined by the length of the permutations to which they correspond.The correspondence between the terms of the resolution above and permutations is as follows:
$D_{6} F \otimes D_{5} F \otimes D_{3} F \leftrightarrow$ identity
$D_{4} F \otimes D_{7} F \otimes D_{3} F \leftrightarrow(12)$
$D_{6} F \otimes D_{2} F \otimes D_{6} F \leftrightarrow(23)$
$D_{4} F \otimes D_{2} F \otimes D_{8} F \leftrightarrow(123)$
$D_{1} F \otimes D_{5} F \otimes D_{8} F \leftrightarrow(13)$
$D_{1} F \otimes D_{6} F \otimes D_{7} F \leftrightarrow(132)$
Now ,the terms can be presented as below ,following Buchsbaum method [1] .
$M_{0}=A_{0}$
$M_{1}=A_{1}+B_{1}$
$M_{2}=A_{2}+B_{2}$
$M_{a}=A_{a}+B_{a}$
$M_{j}=B_{j} ;$ for $\mathrm{j}=4,5,6,7,8,9$.
Where A_{s} are the sums of the Lascoux terms and the B_{s} are the sums of the others.
Then the map can be defined as: $\quad \sigma_{1}: B_{1} \rightarrow A_{1}$
If we define this map as follows:

- $Z_{21}^{[2]} x(v) \mapsto \frac{1}{2} Z_{21} x \partial_{21}(v) \quad$;where $v \in D_{8} \otimes D_{a} \otimes$
D_{a}
- $Z_{21}^{(a)} x(v) \mapsto \frac{1}{a} Z_{21} x \partial_{21}^{(2)}(v) \quad ;$ where $v \in D_{9} \otimes D_{2} \otimes D_{a}$
- $Z_{21}^{(4]} x(v) \mapsto \frac{1}{4} Z_{21} x \partial_{21}^{(a)}(v) \quad$ swhere $v \in D_{10} \otimes$
$D_{1} \otimes D_{2}$
- $Z_{21}^{(5)} x(v) \mapsto \frac{1}{5} Z_{21} x \partial_{21}^{(4)}(v) \quad$;where $v \in D_{11} \otimes$
$D_{0} \otimes D_{a}$
- $Z_{a 2}^{(a)} y(v) \mapsto \frac{1}{a} Z_{a 2} y \partial_{a 2}^{(2)}(v) \quad$;where $v \in D_{6} \otimes D_{8} \otimes$
D_{0}
We should point out that the map σ_{1} satisfies the identity :
$\delta_{A_{1} A_{0}} \sigma_{1}=\delta_{B_{1} B_{0}}$

Where by $\delta_{A_{1} A_{0}}$ we mean the component of the boundary of the fat complex which conveys A_{1} to A_{0}. We will use notation $\delta_{A_{i+1} A_{i}}, \delta_{A_{i+1} B_{i}}$ etc.Then we can define $\partial_{1}: A_{1 \rightarrow} A_{0}$ as $\partial_{1}=\delta_{A_{1} A_{0}}$. It is easy to show that ∂_{1} which we defined above satisfies (3.1) ,for example :

$$
\begin{aligned}
& \left(\delta_{A_{1} A_{0}} \circ \sigma_{1}\right)\left(Z_{21}^{[2]} x(v)\right)=\delta_{A_{1} A_{0}}\left(\frac{1}{2} Z_{21} x \partial_{21}(v)\right)= \\
& \frac{1}{2}\left(\partial_{21} \partial_{21}(v)\right)=\partial_{21}^{(2)}(v)=\delta_{B_{1} B_{0}}\left(Z_{21}^{(2)} x(v)\right)
\end{aligned}
$$

At this point we are in position to define $\partial_{2}: A_{2-1} A_{1}$ as $\partial_{2}=\delta_{A_{2} A_{1}}+\sigma_{1} \delta_{A_{2} B_{1}}$
Proposition(3.1)
The composition $\partial_{1} \circ \partial_{2}=0$
Proof: [1] ,[3]
$\partial_{1} \circ \partial_{2}(a)=\delta_{A_{1} A_{0}} \circ\left(\delta_{A_{2} A_{1}}(a)+\sigma_{1} \circ \delta_{A_{2} B_{1}}(a)\right)$

$$
=\delta_{A_{1} A_{0}} \circ \delta_{A_{2} A_{1}}(a)+\delta_{A_{1} A_{0}} \circ \sigma_{1} \circ \delta_{A_{2} B_{1}}(a)
$$

but $\delta_{A_{1} A_{0}} \circ \sigma_{1}=\delta_{B_{1} B_{0}} \quad$ we have
$\partial_{1} \circ \partial_{2}(a)=\delta_{A_{1} A_{0}} \circ \delta_{A_{2} A_{1}}(a)+\delta_{B_{1} B_{0}} \circ \delta_{A_{2} B_{1}}(a)$
Which equal to zero because the properties of the boundary map $\delta[1]$, so we get that $\partial_{1} \partial_{2}=0$.
Now we define map $\sigma_{2}: B_{2,}, A_{2}$ such that
$\delta_{A_{2} A_{1}}+\sigma_{1} \circ \delta_{B_{2} B_{1}}=\left(\delta_{A_{2} A_{1}}+\sigma_{1} \circ \delta_{A_{2} B_{1}}\right) \circ \sigma_{2}$
We define this maps as follows:

- $Z_{21} x Z_{21} x(v) \mapsto 0$
- $Z_{21}^{(2)} x Z_{21} x \mapsto 0$
- $Z_{21} x Z_{21}^{[2]} x(v) \mapsto$

0 ;where $v \in$
$D_{9} \otimes D_{2} \otimes D_{a}$

- $Z_{21}^{(3)} x Z_{21} x(v) \mapsto$

0
$D_{10} \otimes D_{1} \otimes D_{3}$

- $Z_{21}^{(2)} x Z_{21}^{(2)} x(v) \mapsto$

0
$D_{10} \otimes D_{1} \otimes D_{a}$

- $Z_{21} x Z_{21}^{(9)} x(v) \mapsto 0$
- $Z_{21}^{(4)} x Z_{21} x(v) \mapsto$

0
$D_{11} \otimes D_{0} \otimes D_{a}$

- $Z_{21}^{(a)} x Z_{21}^{(2)} x(v) \mapsto$

0
$D_{11} \otimes D_{0} \otimes D_{a}$

- $Z_{21}^{(2)} x Z_{21}^{(a)} x(v) \mapsto$
$D_{11} \otimes D_{0} \otimes D_{a}$
- $Z_{21} x Z_{21}^{(4)} x(v) \mapsto$

0
$D_{11} \otimes D_{0} \otimes D_{3}$

- $Z_{\text {a2 }} y Z_{21}^{(\mathrm{aj})} x \mapsto$
${ }_{1}^{1} Z_{22} y Z_{21}^{(2)} x \partial_{21}$ (v)
$D_{9} \otimes D_{3} \otimes D_{2}$
- $Z_{a 2} y Z_{21}^{(4)} x(v) \mapsto$
${ }_{6}^{1} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(2)}(v)$
$D_{10} \otimes D_{2} \otimes D_{2}$
- $Z_{32} y Z_{21}^{(5)} x(v) \mapsto$
$\frac{1}{10} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(a)}$ (v)
$D_{11} \otimes D_{1} \otimes D_{2}$
-

$Z_{\text {a2 }} y Z_{21}^{(6)} x(v) \mapsto$
$\frac{1}{15} Z_{\text {a2 }} y Z_{21}^{(2)} x \partial_{21}^{(4)}$ (v)
;where $v \in$
$D_{12} \otimes D_{0} \otimes D_{2}$

```
\(Z_{a 2}^{(2)} y Z_{21}^{(a)} x(v) \mapsto\)
\(\frac{1}{2} Z_{32} y Z_{21}^{(2)} x \partial_{31}\) (v) \(+\frac{1}{6} Z_{32} y Z_{21}^{(2)} x \partial_{21} \partial_{32}\) (v)
    ; where \(v \in D_{9} \otimes D_{4} \otimes D_{1}\)
- \(Z_{a 2}^{(2)} y Z_{12}^{(4)} x(v) \mapsto\)
\({ }_{6}^{1} Z_{a 2} y Z_{21}^{(2)} x \partial_{21} \partial_{a 1}(v)+\frac{1}{12} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{22}(v)\)
; where \(v \in D_{10} \otimes D_{a} \otimes D_{1}\)
- \(Z_{a 2}^{(2)} y Z_{21}^{(5)} x(v) \mapsto \frac{1}{a 0} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{a 1}(v)-\)
\(\frac{1}{5} Z_{a 2} y Z_{a 1} z \partial_{21}^{(4)}\) (v)
```

; where $v \in D_{11} \otimes D_{2} \otimes D_{1}$

- $Z_{22}^{(2)} y Z_{21}^{(6)} x(v) \mapsto$
$-\frac{1}{4} Z_{a 2} y Z_{a 1} z \partial_{21}^{(5)}(v)-$
$\frac{1}{60} Z_{32} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{22}(v) \quad ;$ where $v \in D_{12} \otimes D_{1} \otimes D_{1}$
-

$Z_{22}^{(2)} y Z_{21}^{(7)} x(v) \mapsto$
$-\frac{1}{5} Z_{a 2} y Z_{a 1} z \partial_{21}^{(6)}(v) \quad$;where $v \in$
$D_{13} \otimes D_{0} \otimes D_{1}$

- $Z_{a 2} y Z_{a 2} y(v) \mapsto 0 \quad$;where $v \in D_{6} \otimes D_{7} \otimes D_{1}$
-

$Z_{a 2}^{(a)} y Z_{21}^{(4)} x(v) \mapsto$
${ }^{\frac{1}{3}} Z_{32} y Z_{21}^{(2)} x \partial_{a 1}^{(2)}(v)-\frac{1}{6} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{a 2}^{(2)}(v)-$
${ }_{a}^{1} Z_{a 2} y Z_{a 1} z \partial_{21}^{(a)} \partial_{a 2}(v)$
; where $v \in D_{10} \otimes D_{4} \otimes D_{0}$

- $Z_{32}^{(a)} y Z_{21}^{(5)} x(v) \mapsto \frac{1}{a 0} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(a)} \partial_{32}^{(2)}(v)-$
${ }_{6}^{1} Z_{a 2} y Z_{a 1} z \partial_{21}^{(a)} \partial_{a 1}(v)$; where $v \in D_{11} \otimes D_{a} \otimes D_{0}$
$\cdot Z_{a 2}^{(a)} y Z_{21}^{(6)} x(v) \mapsto \frac{1}{45} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{a 2}^{(2)}(v)+\frac{1}{a 0} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(a)} \partial_{a 2} \partial_{a 1}(v)+\frac{1}{18} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{a 1}^{(2)}(v)$
; where $v \in D_{12} \otimes D_{2} \otimes D_{0}$
$\cdot Z_{a 2}^{(a)} y Z_{21}^{(7)} x(v) \mapsto \frac{1}{a 0} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(a)} \partial_{31}^{(2)}(v)+\frac{1}{45} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(4)} \partial_{a 2} \partial_{a 1}(v) ;$ where $v \in D_{12} \otimes D_{1} \otimes D_{0}$
$\cdot Z_{a 2}^{(a)} y Z_{21}^{(9)} x(v) \mapsto-\frac{1}{15} Z_{a 2} y Z_{31} z \partial_{21}^{(6)} \partial_{31}(v) \quad ;$ where $v \in D_{14} \otimes D_{0} \otimes D_{0}$
- $Z_{\text {a2 }} y Z_{a 2}^{(2)} y(v) \mapsto$
$0 \quad$;where $v \in$
$D_{6} \otimes D_{8} \otimes D_{3}$
- $Z_{a 2}^{(2)} y Z_{a 2} y(v) \mapsto$
$0 \quad$;where $v \in$
$D_{6} \otimes D_{8} \otimes D_{2}$
- $Z_{a 2}^{[2]} y Z_{a 1} z(v) \mapsto$
${ }_{1}^{1} Z_{a 2} y Z_{a 1} z \partial_{a 2}$ (v) \quad;where $v \in$
$D_{7} \otimes D_{7} \otimes D_{0}$
It is easy to show that σ_{2} which is defined above satisfies (3.2), for example we chose one of them
$\left(\delta_{B_{2} A_{1}}+\sigma_{1} \delta_{B_{2} B_{1}}\right)\left(Z_{a 2}^{(2)} y Z_{a 1} z(v)\right) \quad$;where $v \in$
$D_{7} \otimes D_{7} \otimes D_{0}$
$=\sigma_{1}\left(Z_{a 2}^{(a)} y \partial_{21}(v)\right)-Z_{21} x \partial_{a 2}^{(a)}(v)-\sigma_{1}\left(Z_{22}^{(2)} y \partial_{a 1}(v)\right)$
$=\frac{1}{a} Z_{a 2} y \partial_{21} \partial_{a 2}^{(2)}(v)+\frac{1}{a} Z_{a 2} y \partial_{a 2} \partial_{a 1}(v)-Z_{21} x \partial_{a 2}^{(a)}(v)-$
$\frac{1}{2} Z_{a 2} y \partial_{a 2} \partial_{a 1}$ (v)
$=\frac{1}{a} Z_{a 2} y \partial_{21} \partial_{a 2}^{(2)}(v)-\frac{1}{6} Z_{a 2} y \partial_{a 2} \partial_{a 1}(v)-Z_{21} x \partial_{a 2}^{(a)}(v)$
and
$\left(\delta_{A_{2} A_{1}}+\sigma_{1} \delta_{A_{2} B_{1}}\right)\left(\frac{1}{a} Z_{a 2} y Z_{a 1} z \partial_{a 2}(v)\right)$
$=\sigma_{1}\left({ }_{a}^{1} Z_{a 2}^{(2)} y \partial_{21} \partial_{a 2}(v)\right)-\frac{1}{3} Z_{21} x \partial_{a 2}^{(2)} \partial_{a 2}(v)-$
${ }_{a}^{1} Z_{a 2} y \partial_{a 1} \partial_{a 2}$ (v)
$={ }_{6}^{1} Z_{a 2} y \partial_{21} \partial_{a 2} \partial_{a 2}(v)+\frac{1}{6} Z_{a 2} y \partial_{a 2} \partial_{a 1}(v)-$
${ }_{a}^{a} Z_{21} x \partial_{a 2}^{(a)}(v)-\frac{1}{a} Z_{a 2} y \partial_{a 2} \partial_{a 1}$ (v)
$=\frac{1}{a} Z_{a 2} y \partial_{21} \partial_{a 2}^{(2)}(v)-\frac{1}{6} Z_{a 2} y \partial_{a 2} \partial_{a 1}(v)-Z_{21} x \partial_{32}^{(a)}(v)$
Proposition 3.2
we have exactness at A_{i}
Proof : See [1] and [3]
Now by using σ_{2} we can also define $\partial_{a}: A_{a} \rightarrow A_{2}$ by $\partial_{a}=\delta_{A_{3} A_{2}}+\sigma_{2} \delta_{A_{3} B_{2}}$
Proposition 3.3

$$
\partial_{2} \circ \partial_{a}=0
$$

Proof :the same way used in proposition (3.1)
we need the definition of a map $\sigma_{3}: B_{2} \rightarrow A_{2}$ Such that $\delta_{B_{3} A_{2}}+\sigma_{2} \delta_{B_{3} B_{2}}\left(\delta_{A_{3} A_{2}}+\sigma_{2} \delta_{A_{3} B_{2}}\right) \sigma_{3}$
As follows
-
$Z_{21} x Z_{21} x Z_{21} x(v) \mapsto$
0
;where $v \in D_{9} \otimes D_{2} \otimes D_{a}$
$Z_{21}^{(2)} x Z_{21} x Z_{21} x(v) \mapsto$
$0 \quad$;where $v \in D_{10} \otimes D_{1} \otimes D_{a}$
$Z_{21} x Z_{21}^{(2)} x Z_{21} x(v) \mapsto$
$0 \quad$;where $v \in D_{10} \otimes D_{1} \otimes D_{3}$
$Z_{21} x Z_{21} x Z_{21}^{(2)} x(v) \mapsto$
0
$;$ where $v \in D_{10} \otimes D_{1} \otimes D_{2}$
$Z_{21}^{(a)} x Z_{21} x Z_{21} x(v) \mapsto$
0
;where $v \in D_{11} \otimes D_{0} \otimes D_{a}$
$Z_{21} x Z_{21}^{(\mathrm{a})} x Z_{21} x(v) \mapsto$
0
; where $v \in D_{11} \otimes D_{0} \otimes D_{a}$
$Z_{21} x Z_{21} x Z_{21}^{(a)} x(v) \mapsto$
0 ;where $v \in D_{11} \otimes D_{0} \otimes D_{a}$
$Z_{21}^{(2)} x Z_{21}^{(2)} x Z_{21} x(v) \mapsto$ 0 -
$Z_{21}^{(2)} x Z_{21} x Z_{21}^{(2)} x(v) \mapsto$ 0
-
$Z_{21} x Z_{21}^{(2)} x Z_{21}^{(2)} x(v) \mapsto$ 0
$Z_{a 2} y Z_{21}^{(2)} x Z_{21} x(v) \mapsto$ 0
$Z_{a 2} y Z_{21}^{(\mathrm{a})} x Z_{21} x(v) \mapsto$ 0
$Z_{a 2} y Z_{21}^{(2)} x Z_{21}^{(2)} x(v) \mapsto$ 0
-
$Z_{\text {a2 }} y Z_{21}^{(4)} x Z_{21} x(v) \mapsto$ 0
$Z_{a 2} y Z_{21}^{(a)} x Z_{21}^{(2)} x(v) \mapsto$ 0
$Z_{a 2} y Z_{21}^{(2)} x Z_{21}^{(a)} x(v) \mapsto$ 0
$Z_{\text {a2 }} y Z_{21}^{(5)} x Z_{21} x(v) \mapsto$ 0
$Z_{a 2} y Z_{21}^{(4)} x Z_{21}^{(2)} x(v) \mapsto$ 0
-
$Z_{32} y Z_{21}^{(a)} x Z_{21}^{(a)} x(v) \mapsto$ 0
$Z_{\text {a2 }} y Z_{21}^{(2)} x Z_{21}^{(4)} x(v) \mapsto$ 0
$Z_{32}^{(2)} y Z_{21}^{(a)} x Z_{21} x(v) \mapsto$ 0

- $Z_{32}^{(2)} y Z_{21}^{[4]} x Z_{21} x(v) \mapsto$
$\frac{1}{4} Z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21}^{(a)}(v) \quad$; where $v \in D_{11} \otimes D_{2} \otimes D_{1}$
;where $v \in D_{11} \otimes D_{0} \otimes D_{a}$
;where $v \in D_{11} \otimes D_{0} \otimes D_{a}$
; where $v \in D_{11} \otimes D_{0} \otimes D_{a}$
;where $v \in D_{9} \otimes D_{3} \otimes D_{2}$
; where $v \in D_{10} \otimes D_{2} \otimes D_{2}$
;where $v \in D_{10} \otimes D_{2} \otimes D_{2}$
; where $v \in D_{11} \otimes D_{1} \otimes D_{2}$
; where $v \in D_{11} \otimes D_{1} \otimes D_{2}$
swhere $v \in D_{11} \otimes D_{1} \otimes D_{2}$
; where $v \in D_{12} \otimes D_{0} \otimes D_{2}$
swhere $v \in D_{12} \otimes D_{0} \otimes D_{2}$
;where $v \in D_{12} \otimes D_{0} \otimes D_{2}$
;where $v \in D_{12} \otimes D_{0} \otimes D_{2}$
swhere $v \in D_{10} \otimes D_{a} \otimes D_{1}$

$$
0 \quad \text {;where } v \in D_{9} \otimes D_{4} \otimes D_{1}
$$

$$
\cdot Z_{a 2} y z_{a 2} y z_{21}^{(4)} x(v) \mapsto
$$

$$
0 \quad ; \text { where } v \in D_{10} \otimes D_{3} \otimes D_{1}
$$

$$
\cdot Z_{32} y Z_{32} y Z_{21}^{(5)} x(v) \mapsto-\frac{1}{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)}(v) \quad ; \text { where } v \in D_{11} \otimes D_{2} \otimes D_{1}
$$

$$
\cdot Z_{a 2} y Z_{a 2} y Z_{21}^{(6)} x(v) \mapsto-\frac{1}{10} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(4)}(v) \quad ; \text { where } v \in D_{12} \otimes D_{1} \otimes D_{1}
$$

$$
\cdot Z_{a 2} y Z_{a 2} y Z_{21}^{(7)} x(v) \mapsto-\frac{1}{15} Z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21}^{(5)}(v) \quad ; \text { where } v \in D_{19} \otimes D_{0} \otimes D_{1}
$$

$$
\cdot Z_{32}^{(a)} y Z_{21}^{(4)} x Z_{21} x(v) \mapsto \frac{1}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{11}(v)-
$$

$$
\frac{1}{a} Z_{a 2} y z_{31} z Z_{21} x \partial_{21}^{(a)} \partial_{32}(v)
$$

; where $v \in D_{11} \otimes D_{a} \otimes D_{0}$

- $Z_{32}^{(3)} y z_{21}^{(5)} x Z_{21} x(v) \mapsto-\frac{1}{6} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{31}(v)$; where $v \in D_{12} \otimes D_{2} \otimes D_{0}$
- $Z_{22}^{(9)} y z_{21}^{(4)} x Z_{21}^{(2)} x(v) \mapsto-\frac{1}{3} Z_{22} y Z_{31} z Z_{21} x \partial_{21}^{(\mathrm{aj})} \partial_{\mathrm{a1}}(v)-$
${ }_{a}^{2} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{32}$ (v)
; where $v \in D_{12} \otimes D_{2} \otimes D_{0}$
$Z_{22}^{(\mathrm{aj})} y z_{21}^{(6)} x Z_{21} x(w) \mapsto$
$Z_{0} \quad$;where $v \in D_{19} \otimes D_{1} \otimes D_{0}$
- $Z_{32}^{(a)} y Z_{21}^{(5)} x Z_{21}^{(2)} x(v) \mapsto-\frac{1}{a} Z_{32} y Z_{31} z Z_{21} \partial \partial_{21}^{(4)} \partial_{31}(v) \quad ;$ where $v \in D_{12} \otimes D_{1} \otimes D_{0}$
- $Z_{32}^{(a)} y z_{21}^{(4)} x Z_{21}^{(a)} x(v) \mapsto-\frac{2}{3} z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)-$
${ }_{9}^{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{32}(v)$
; where $v \in D_{19} \otimes D_{1} \otimes D_{0}$
$\cdot Z_{32}^{(\mathrm{al}} y z_{21}^{(7)} x Z_{21} x(v) \mapsto \frac{4}{45} Z_{22} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v) \quad ;$ where $v \in D_{14} \otimes D_{0} \otimes D_{0}$
$\cdot Z_{32}^{(9)} y Z_{21}^{(6)} x Z_{21}^{(2)} x(v) \mapsto \frac{14}{45} z_{22} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v) \quad ;$ where $v \in D_{14} \otimes D_{0} \otimes D_{0}$
$\cdot Z_{12}^{(a)} y Z_{21}^{(5)} x Z_{21}^{(a)} x(v) \mapsto \frac{1}{15} Z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v) \quad ;$ where $v \in D_{14} \otimes D_{0} \otimes D_{0}$
$\cdot Z_{32}^{(a)} y z_{21}^{(4)} x Z_{21}^{(4)} x(v) \mapsto-\frac{1}{a} z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{31}(v) \quad ;$ where $v \in D_{14} \otimes D_{0} \otimes D_{0}$
- $Z_{a 2} y z_{a 2}^{(2)} y z_{21}^{(4)} x(v) \mapsto-\frac{1}{3} z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{32}(v) \quad ;$ where $v \in D_{10} \otimes D_{4} \otimes D_{0}$
$\cdot Z_{a 2} y Z_{32}^{(2)} y Z_{21}^{(5)} x(v) \mapsto-\frac{1}{6} z_{22} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{21}(v) \quad ;$ where $v \in D_{11} \otimes D_{1} \otimes D_{0}$

$$
\begin{aligned}
& \text { - } Z_{32}^{(a)} y Z_{21}^{(a)} x Z_{21}^{(z)} x(v) \mapsto \frac{1}{2} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(a)}(v) \quad ; \text { where } v \in D_{11} \otimes D_{2} \otimes D_{1} \\
& \cdot Z_{32}^{(2)} y Z_{21}^{(5)} x Z_{21} x(v) \mapsto \frac{1}{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)}(v) \quad ; \text { where } v \in D_{12} \otimes D_{1} \otimes D_{1} \\
& \text { - } Z_{32}^{(2)} y z_{21}^{(4)} x z_{21}^{(2)} x(v) \mapsto{ }_{4}^{a} z_{a 2} y z_{31} z Z_{21} x \partial_{21}^{(4)}(v) \quad \text {; where } v \in D_{12} \otimes D_{1} \otimes D_{1} \\
& \cdot Z_{32}^{(a)} y Z_{21}^{(a)} x Z_{21}^{(a)} x(v) \mapsto Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(4)}(v) \quad ; \text { where } v \in D_{12} \otimes D_{1} \otimes D_{1} \\
& \cdot Z_{\mathrm{a2}}^{(2)} y Z_{21}^{(6)} x Z_{21} x(v) \mapsto-\frac{1}{60} Z_{22} y z_{31} z Z_{21} x \partial_{21}^{(5)}(v) \quad ; \text { where } v \in D_{19} \otimes D_{0} \otimes D_{1} \\
& \text { - } Z_{32}^{(2)} y Z_{21}^{(5)} x Z_{21}^{(2)} x(v) \mapsto{ }_{5}^{1} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(5)}(v) \quad ; \text { where } v \in D_{13} \otimes D_{0} \otimes D_{1} \\
& \cdot Z_{32}^{(2)} y Z_{21}^{(4)} x Z_{21}^{(a)} x(v) \mapsto \frac{7}{6} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)}(v) \quad ; \text { where } v \in D_{13} \otimes D_{0} \otimes D_{1} \\
& \cdot Z_{a 2}^{(2)} y z_{21}^{(a)} x Z_{21}^{(4)} x(v) \mapsto \frac{7}{6} Z_{a 2} y z_{31} z Z_{21} x \partial_{21}^{(5)}(v) \quad ; \text { where } v \in D_{13} \otimes D_{0} \otimes D_{1}
\end{aligned}
$$

$Z_{a 2} y Z_{a 2}^{(2)} y Z_{21}^{(6)} x(v) \mapsto$
$0 \quad$;where $v \in D_{12} \otimes D_{2} \otimes D_{0}$
$Z_{a 2} y Z_{a 2}^{(2)} y z_{21}^{(T)} x(v) \mapsto$
$0 \quad$;where $v \in D_{13} \otimes D_{1} \otimes D_{0}$

- $Z_{a 2} y z_{a 2}^{(2)} y z_{21}^{(\mathrm{aj})} x(v) \mapsto-\frac{1}{a 0} Z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21}^{(5)} \partial_{21}(v) ;$ where $v \in D_{14} \otimes D_{0} \otimes D_{0}$
$-Z_{32}^{(2)} y z_{a 2} y z_{21}^{(4)} x(v) \mapsto-\frac{1}{3} z_{32} y z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{32}(v) \quad ;$ where $v \in D_{10} \otimes D_{4} \otimes D_{0}$
- $Z_{a 2}^{(2)} y Z_{32} y Z_{21}^{(5)} x(v) \mapsto \frac{1}{20} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v)-$
${ }_{6}^{1} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(2)} \partial_{31}(v)$
$;$ where $v \in D_{11} \otimes D_{a} \otimes D_{0}$
- $z_{\mathrm{a2}}^{(2)} y z_{\mathrm{a2}} y z_{21}^{(6)} x(v) \mapsto \frac{1}{20} z_{a 2} y z_{31} z z_{21} x \partial_{21}^{(3)} \partial_{31}(v)+$
$\frac{1}{20} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{32}(v)$
$;$ where $v \in D_{12} \otimes D_{2} \otimes D_{0}$
- $Z_{32}^{(2)} y Z_{a 2} y Z_{21}^{(7)} x(v) \mapsto \frac{1}{30} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(5)} \partial_{a 2}(w)+$
$\frac{1}{20} Z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21}^{(4)} \partial_{31}(v)$

$$
\text { ; where } v \in D_{13} \otimes D_{1} \otimes D_{0}
$$

-

$Z_{22}^{(2)} y Z_{a 2} y Z_{21}^{(9)} x(v) \mapsto 0 \quad$;where $v \in$
$D_{14} \otimes D_{0} \otimes D_{0}$

- $Z_{a 2} y Z_{a 2} y Z_{a 2} y(v) \mapsto$

0 $;$ where $v \in D_{6} \otimes D_{8} \otimes D_{0}$
-
$Z_{\text {a2 }} y Z_{31} z Z_{21}^{(2)} x(v) \mapsto$
$\frac{1}{2} Z_{22} y Z_{21} z Z_{21} x \partial_{21}(v) \quad ;$ where $v \in D_{9} \otimes D_{4} \otimes D_{1}$

- $Z_{32} y Z_{31} z Z_{21}^{(a)} x(w) \mapsto \frac{1}{a} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(2)}(v) \quad ;$ where $v \in D_{10} \otimes D_{1} \otimes D_{1}$
$\cdot Z_{32} y Z_{31} z Z_{21}^{(4)} x(v) \mapsto \frac{1}{10} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)}(v) \quad ;$ where $v \in D_{11} \otimes D_{2} \otimes D_{1}$
$Z_{32} y Z_{31} z Z_{21}^{(5)} x(v) \mapsto$
$0 \quad$;where $v \in D_{12} \otimes D_{1} \otimes D_{1}$
-

$Z_{32} y z_{31} z Z_{21}^{(6)} x(v) \mapsto$
$0 \quad$;where $v \in D_{13} \otimes D_{0} \otimes D_{1}$

- $z_{32}^{(2)} y z_{31} z Z_{21}^{(2)} x(v) \mapsto \frac{1}{6} z_{a 2} y Z_{31} z z_{21} x \partial_{21} \partial_{32}(v)+$
${ }_{3}^{1} Z_{a 2} y Z_{31} z Z_{21} x \partial_{31}(v)$
; where $v \in D_{9} \otimes D_{5} \otimes D_{0}$
- $Z_{a 2}^{(2)} y Z_{31} z Z_{21}^{(a)} x(v) \mapsto \frac{1}{6} z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21} \partial_{31}(v) \quad ;$ where $v \in D_{10} \otimes D_{4} \otimes D_{0}$
$\cdot Z_{32}^{(2)} y Z_{31} z Z_{21}^{(4)} x(v) \mapsto \frac{1}{30} Z_{32} y Z_{31} z Z_{21} x \partial_{21}^{(3)} \partial_{32}(v) \quad ;$ where $v \in D_{11} \otimes D_{a} \otimes D_{0}$
- $Z_{32}^{(2)} y Z_{31} z Z_{21}^{(5)} x(v) \mapsto \frac{1}{12} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(a)} \partial_{21}(v)+$
$\frac{1}{60} Z_{a 2} y Z_{31} z Z_{21} x \partial_{21}^{(4)} \partial_{22}(v)$
; where $v \in D_{12} \otimes D_{2} \otimes D_{0}$
- $Z_{a 2}^{(2)} y Z_{a 1} z Z_{21}^{(6)} x(v) \mapsto \frac{1}{15} Z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21}^{(4)} \partial_{a 1}(v)+$
$\frac{1}{45} Z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21}^{(5)} \partial_{a 2}$ (v)

$$
; \text { where } v \in D_{13} \otimes D_{1} \otimes D_{0}
$$

*

$Z_{a 2}^{(2)} y Z_{a 1} z Z_{21}^{(7)} x(v) \mapsto$
$0 \quad ;$ where $v \in D_{14} \otimes D_{0} \otimes D_{0}$
-
$Z_{a 2} y Z_{a 2} y Z_{a 1} z(v) \mapsto$
$0 \quad$ swhere $v \in D_{7} \otimes D_{7} \otimes D_{0}$
Again we can show that σ_{a} which defined above satisfies the condition (3.3) , and we chose one of them as an example

```
- \(\left(\delta_{B_{3} A_{2}}+\sigma_{2} \delta_{B_{3} B_{2}}\right)\left(Z_{a 2} y Z_{a 2} y Z_{21}^{(5)} x(v)\right) \quad\); where \(v \in\)
\(D_{11} \otimes D_{2} \otimes D_{1}\)
\(=\)
\(\sigma_{2}\left(2 Z_{a 2}^{(2)} y Z_{21}^{(5)} x(v)\right)-\sigma_{2}\left(Z_{a 2} y Z_{21}^{(5)} x \partial_{a 2}(v)\right)-\)
\(\sigma_{2}\left(Z_{a 2} y Z_{21}^{(4)} x \partial_{a 1}(v)\right)+\sigma_{2}\left(Z_{a 2} y Z_{a 2} y \partial_{21}^{(5)}(v)\right)\)
\(=\frac{2}{a 0} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(2)} \partial_{a 1}(v)-\frac{2}{5} Z_{a 2} y Z_{a 1} z \partial_{21}^{(4)}(v)-\frac{1}{10} Z_{a 2} y Z_{21}^{[2]} x \partial_{21}^{(a)} \partial_{a 2}(v)-\frac{1}{6} Z_{a 2} y Z_{21}^{[2]} x \partial_{21}^{(2])} \partial_{a 1}(v)\)
\(=-\frac{1}{10} Z_{a 2} y Z_{21}^{[2]} x \partial_{21}^{(2)} \partial_{31}(v)-\frac{2}{5} Z_{a 2} y Z_{31} z \partial_{21}^{(4)}(v)-\)
\(\frac{1}{10} Z_{a 2} y Z_{21}^{(2)} x \partial_{21}^{(a)} \partial_{a 2}(v)\)
```

and

$$
=-\frac{1}{10} Z_{a 2} y Z_{21}^{[2]} x \partial_{21}^{(a)} \partial_{a 2}(v)-\frac{1}{10} Z_{a 2} y Z_{21}^{[2]} x \partial_{21}^{(2)} \partial_{a 1}(v)-\quad \text { proposition } 4
$$

$$
\frac{2}{5} Z_{a 2} y Z_{a 1} z \partial_{21}^{(4)}(v)
$$

The
complex $0 \rightarrow A_{1} \xrightarrow{d_{3}} A_{2} \xrightarrow{\partial_{2}} A_{1} \xrightarrow{\partial_{1}} A_{0} \rightarrow K_{(6,5,3)} F$ is exact.

So from all we have done above we have the complex

$$
\begin{equation*}
0 \rightarrow A_{1} \xrightarrow{\partial_{3}} A_{2} \xrightarrow{\partial_{2}} A_{1} \xrightarrow{\partial_{1}} A_{0} \tag{3.4}
\end{equation*}
$$

Where ∂_{i} defined by:

- $\partial_{1}\left(Z_{21} x(v)\right)=\partial_{21}(v)$
- $\partial_{1}\left(Z_{a 2} y(v)\right)=\partial_{a 2}(v)$
$\partial_{2}\left(Z_{a 2} y Z_{21}^{(2)} x(v)\right)=\frac{1}{2} Z_{21} x \partial_{21} \partial_{a 2}(v)+$
- $Z_{21} x \partial_{a 1}(v)-Z_{a 2} y \partial_{21}^{(2)}(v)$

REFERENCES

[1] D.A .Buchsbum ,(2004),Characteristic free Example of Lascoux Resolution and Letter place methods for Intertwining Numbers ,European Journal of Gombinatorics ,Vol . 25 , pp .1169-1179.
[2] D.A. Buchsbum and G.C.Rota ,(2001),Approaches to Resolution of Weyl modules ,Adv .In applied math . 27 ,pp .82-191.
[3] H .R .Hassan ,(2006),Application of the characteristic free Resolution of Weyl module to the Lascoux resolution in the case $(3,3,3)$.ph D. thesis ,Universita di Roma "Tor Vergata".

$$
\begin{aligned}
& \left(\delta_{A_{3 A_{2}}}+\sigma_{2} \delta_{A_{3} B_{2}}\right)\left(-\frac{1}{10} Z_{a 2} y Z_{a 1} z Z_{21} x \partial_{21}^{(1)}(v)\right) \\
& \partial_{2}\left(Z_{a 2} y Z_{a 1} z(v)\right)=\frac{1}{2} Z_{a 2} y \partial_{a 2} \partial_{21}(v)- \\
& \text { - } Z_{21} x \partial_{a 2}^{(2)}(v)-Z_{a 2} y \partial_{a 2}^{(2)}(v) \\
& =\sigma_{2}\left(\frac{1}{10} Z_{21} x Z_{21} x \partial_{32}^{(2)} \partial_{21}^{(1)}(v)\right)-\frac{1}{10} Z_{a 2} y Z_{21}^{(2)} x \partial_{a 2} \partial_{21}^{(1)}(v)+ \\
& \sigma_{2}\left(\frac{1}{10} Z_{a 2} y Z_{a 2} y \partial_{21}^{(2)} \partial_{21}^{(a)}(v)\right)- \\
& \frac{4}{10} Z_{a 2} y Z_{31} z \partial_{21}^{(4)} \text { (v) }
\end{aligned}
$$

[^0]: Dr.Haytham Razooki Hassan, Department of Mathematics, Roma University / College of science / Baghdad, Iraq .

 Nora Taha Abd, Department of Mathematics, Al -Mustansiriya University/ Collegeof Science/ Baghdad, Iraq .

